(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), 0) →+ s(minus(x, 0))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0'
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0'), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0', y) → false
gt(s(x), 0') → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0') → true
ge(0', s(x)) → false
ge(s(x), s(y)) → ge(x, y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
gt,
gcd,
geThey will be analysed ascendingly in the following order:
gt < minus
minus < gcd
gt < gcd
ge < gcd
(8) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
gt, minus, gcd, ge
They will be analysed ascendingly in the following order:
gt < minus
minus < gcd
gt < gcd
ge < gcd
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_s:0'3_0(
n5_0),
gen_s:0'3_0(
n5_0)) →
false, rt ∈ Ω(1 + n5
0)
Induction Base:
gt(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
minus, gcd, ge
They will be analysed ascendingly in the following order:
minus < gcd
ge < gcd
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(13) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
ge, gcd
They will be analysed ascendingly in the following order:
ge < gcd
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_s:0'3_0(
n379_0),
gen_s:0'3_0(
n379_0)) →
true, rt ∈ Ω(1 + n379
0)
Induction Base:
ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_s:0'3_0(+(n379_0, 1)), gen_s:0'3_0(+(n379_0, 1))) →RΩ(1)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
gcd
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gcd.
(18) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(20) BOUNDS(n^1, INF)
(21) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
ge(gen_s:0'3_0(n379_0), gen_s:0'3_0(n379_0)) → true, rt ∈ Ω(1 + n3790)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
minus(
s(
x),
y) →
if(
gt(
s(
x),
y),
x,
y)
if(
true,
x,
y) →
s(
minus(
x,
y))
if(
false,
x,
y) →
0'gcd(
x,
y) →
if1(
ge(
x,
y),
x,
y)
if1(
true,
x,
y) →
if2(
gt(
y,
0'),
x,
y)
if1(
false,
x,
y) →
gcd(
y,
x)
if2(
true,
x,
y) →
gcd(
minus(
x,
y),
y)
if2(
false,
x,
y) →
xgt(
0',
y) →
falsegt(
s(
x),
0') →
truegt(
s(
x),
s(
y)) →
gt(
x,
y)
ge(
x,
0') →
truege(
0',
s(
x)) →
falsege(
s(
x),
s(
y)) →
ge(
x,
y)
Types:
minus :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
if :: true:false → s:0' → s:0' → s:0'
gt :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
0' :: s:0'
gcd :: s:0' → s:0' → s:0'
if1 :: true:false → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
if2 :: true:false → s:0' → s:0' → s:0'
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)